Proteomics: Analysis of Spectral Data
نویسنده
چکیده
The goal of disease-related proteogenomic research is a complete description of the unfolding of the disease process from its origin to its cure. With a properly selected patient cohort and correctly collected, processed, analyzed data, large scale proteomic spectra may be able to provide much of the information necessary for achieving this goal. Protein spectra, which are one way of representing protein expression, can be extremely useful clinically since they can be generated from blood rather than from diseased tissue. At the same time, the analysis of circulating proteins in blood presents unique challenges because of their heterogeneity, blood contains a large number of different abundance proteins generated by tissues throughout the body. Another challenge is that protein spectra are massively parallel information. One can choose to perform top-down analysis, where the entire spectra is examined and candidate peaks are selected for further assessment. Or one can choose a bottom-up analysis, where, via hypothesis testing, individual proteins are identified in the spectra and related to the disease process. Each approach has advantages and disadvantages that must be understood if protein spectral data are to be properly analyzed. With either approach, several levels of information must be integrated into a predictive model. This model will allow us to detect disease and it will allow us to discover therapeutic interventions that reduce the risk of disease in at-risk individuals and effectively treat newly diagnosed disease.
منابع مشابه
Significance analysis of spectral count data in label-free shotgun proteomics.
Spectral counting has become a commonly used approach for measuring protein abundance in label-free shotgun proteomics. At the same time, the development of data analysis methods has lagged behind. Currently most studies utilizing spectral counts rely on simple data transforms and posthoc corrections of conventional signal-to-noise ratio statistics. However, these adjustments can neither handle...
متن کاملAbacus: a computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis.
We describe Abacus, a computational tool for extracting spectral counts from MS/MS data sets. The program aggregates data from multiple experiments, adjusts spectral counts to accurately account for peptides shared across multiple proteins, and performs common normalization steps. It can also output the spectral count data at the gene level, thus simplifying the integration and comparison betwe...
متن کاملRepresenting Spectral data using LabPQR color space in comparison to PCA method
In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...
متن کاملAutomated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data
Protein turnover is a well-controlled process in which polypeptides are constantly being degraded and subsequently replaced with newly synthesized copies. Extraction of composite spectral envelopes from complex LC/MS shotgun proteomics data can be a challenging task, due to the inherent complexity of biological samples. With partial metabolic labeling experiments this complexity increases as a ...
متن کاملBuilding and searching tandem mass spectral libraries for peptide identification.
Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. Conceptually, the premise of this approach is that the tandem MS fragmentation pattern of a peptide under some fixed conditions is a reproducible fingerprint of that peptide, such that unknown spectra acquired under the same conditions can be identi...
متن کاملTools for label-free peptide quantification.
The increasing scale and complexity of quantitative proteomics studies complicate subsequent analysis of the acquired data. Untargeted label-free quantification, based either on feature intensities or on spectral counting, is a method that scales particularly well with respect to the number of samples. It is thus an excellent alternative to labeling techniques. In order to profit from this scal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer Informatics
دوره 1 شماره
صفحات -
تاریخ انتشار 2005